

Ultimi aggiornamenti nella determinazione dei VOC in acque sotterranee DLGS152/06

Introduzione:

L'elio è il gas di trasporto preferito per la gascromatografia accoppiata alla spettrometria di massa (GC/MS) perché affianca a caratteristiche cromatografiche favorevoli un'inerzia ideale per la rivelazione MS.

La tecnica di estrazione Purge&Trap prevede una fase di purge e una successiva concentrazione su trappola; l'elio viene utilizzato per strippare gli analiti volatili dalla matrice del campione al fine di concentrarli su una trappola analitica.

La carenza di elio riscontrata negli ultimi anni sta rendendo il suo utilizzo sempre meno sostenibile. La disponibilità limitata ha effetti negativi sia sulla tempistica di approvvigionamento che sui prezzi. Ciò rende questa risorsa sempre meno accessibile e spinge verso la ricerca di alternative praticabili.

Si guarda con sempre maggiore attenzione all'utilizzo di gas alternativi che possano allo stesso tempo garantire le performance consolidate dell'elio nel settore gascromatografico.

Questo documento presenta le evidenze sperimentali ottenute e porta l'attenzione sui benefici portati dai più recenti sviluppi tecnologici. La soluzione strumentale composta da:

P&T Centurion-Evolution 2 di EST Analytical e sistema GC/MS 8890/5977 Agilent completo della nuova sorgente di ionizzazione Hydroinert consente di raggiungere i limiti prestabiliti dal DLGS 152/2006 e le sue successive modifiche utilizzando azoto come gas di purge nel concentratore P&T e idrogeno come gas carrier in GC/MS, eliminando completamente l'utilizzo di elio.

P&T Centurion-Evolution 2 EST Analytical-GC/MS 8890/5977 Agilent

Condizioni sperimentali

Le condizioni sperimentali sono state ottimizzate per massimizzare la precisione e la sensibilità nell'analisi degli analiti attraverso una separazione ottimale.

La modalità di acquisizione SIM/SCAN consente la rilevazione selettiva dei composti target.

L'impiego della sorgente Hydroinert e gas carrier idrogeno contribuiscono a una migliore separazione e rilevazione dei composti volatili.

- ◆ Sistema di campionamento Centurion e P&T EV2:
- Utilizzo di un restrittore per gas azoto.
- P&T EV2 con una trappola tipo Vocarb 3000, calibrato per lavorare con gas azoto.
- Collegamento della linea di trasferimento dell'EV2 all'ingresso del GC per il trasferimento e la separazione degli analiti.

◆GC/MS:

- Colonna GC DB-624UI 20 m \times 0,18 mm \times 1 $\,\mu m.$
- Configurazione del detector di massa per operare in modalità SIM/SCAN.
- sorgente Hydroinert e carrier gas idrogeno.

Parametri sperimentali

Purge and Trap Concentrator Evolution 2				
Тгар Туре	Vocarb 3000			
Valve Oven Temp.	130°C			
Transfer Line Temp.	130°C			
Trap Temp.	35°C			
Moisture Reduction Trap (MoRT) Temp.	39°C			
Purge Time	I min			
Purge Flow	40mL/min			
Dry Purge Temp.	Off			
Dry Purge Flow	40mL/min			
Dry Purge Time	2.0 min			
Desorb Pressure Control	On			
Desorb Pressure	7psi			
DesorbTime	0.5 min			
Desorb Preheat Delay	5 sec			
Desorb Temp.	250°C			
Moisture Reduction Trap (MoRT) Bake Temp.	210°C			
Bake Temp.	260°C			
Sparge Vessel Bake Temp.	II0°C			
Bake Time	8 min			
Bake Flow	85mL/min			

Parametri GC/MS	8890/5977C
Inlet	Split/Splitless
Inlet Temp.	220°C
Inlet Head Pressure	8.503
Mode	Split
Split Ratio	4:1
Column	DB-624UI 30m \times 0.25mm I.D. I.4 μ m film thickness
Oven Temp. Program	35°C hold for 1 min, ramp 20°C/min to 80°C for 2,75 min, ramp 20°C/min to 240°C for for 1 min, run time 15 min
Column Flow Rate	I mL/min
Gas	Hydrogen
Total Flow	5 mL/min
Source Temp.	230°C
Quad Temp.	150°C
Quad Temp. MS Transfer Line Temp.	150°C
MS Transfer Line	
MS Transfer Line Temp.	180°C
MS Transfer Line Temp. Scan Range m/z	180°C 35-260

Campionatore P&T Centurion WS			
Sample Type	Water		
Sample Fill Mode:	Syringe		
Sample Volume	25 mL		
Sample Prime Time:	7 sec		
Sample Transfer Time:	35 sec		
Syringe Rinse	On/7mL		
Number of Syringe Rinses	2		
Sample Loop Rinse	On/10 sec		
Sample Loop Sweep	Time 5 sec		
Number of Sparge Rinses	Syringe/2		
Rinse Volume	25mL		
IS volume	5µL		

Risultati

Durante le analisi, ad ogni campione, sono stati aggiunti $5~\mu L$ di soluzione di Internal Standard ad una concentrazione di 1.2~ppm. La Figura 1~illustra un cromatogramma relativo a un'analisi a concentrazione di 4~ppb.

Analita	Quantifier	Qualifier	RT	μg/L*	ISTD compound
Vinil cloruro	50	52	1.83	1.5	(I.S.) Fluorobenzene
Clorometano	62	64	1.92	0.5	(I.S.) Fluorobenzene
I,I-DicloroEtilene	96	61,63	2.28	0.05	(I.S.) Fluorobenzene
trans-1,2-Dicloroetilene	96	61,98	2.58	60	(I.S.) Fluorobenzene
I,I-Dicloroetano	63	65, 83	2.75	810	(I.S.) Fluorobenzene
cis-1,2-Dicloroetilene	96	61,98	2.96	60	(I.S.) Fluorobenzene
Cloroformio	83	85	3.09	0.15	(I.S.) Fluorobenzene
Benzene	78		3.35	1	(I.S.) Fluorobenzene
1,2-Dicloroetano	62	98	3.35	3	(I.S.) Fluorobenzene
(I.S.) Fluorobenzene	96	77	3.48	-	none
Tricloroetilene	95	97, 130,132	3.67	1.5	(I.S.) Fluorobenzene
1,2-Dicloropropano	63	112	3.8	0.15	(I.S.) Fluorobenzene
Bromodiclorometano	83	85, 127	3.97	0.17	(I.S.) Fluorobenzene
Toluene	92	91	4.59	15	(I.S.) Fluorobenzene
1,1,2-Tricloroetano	83	97, 85	4.98	0.2	(I.S.) Fluorobenzene
Tetracloroetilene	164	129, 131, 166	5.15	1.1	(I.S.) Fluorobenzene
Dibromoclorometano	129	127	5.45	0.13	(I.S.) Fluorobenzene
1,2-Dibromoetano**	107	109, 188	5.6	0.001	(I.S.) Fluorobenzene
Clorobenzene	112	77, 114	6.32	40	(I.S.) Fluorobenzene
Etilbenzene	91	106	6.52	50	(I.S.) Fluorobenzene
(m+p) XILENI	106	91	6.69	10	(I.S.) Fluorobenzene
Stirene	104	78	7.19	25	(I.S.) Fluorobenzene
Bromoformio	173	175, 254	7.36	0.3	(I.S.) Fluorobenzene
(I.S.) p-Bromofluorobenzene	95	174, 176	7.764	-	(I.S.) Fluorobenzene
I,I,2,2-Tetracloroetano	83	131,85	7.97	0.05	(I.S.) Fluorobenzene
1,2,3-Tricloropropano**	75	110, 112, 77	7.98	0.001	(I.S.) Fluorobenzene
I,4-Diclorobenzene	146	111,148	8.96	0.5	(I.S.) Fluorobenzene
(I.S.) 1,2-Diclorobenzene-D4	152	115, 150	9.27	-	(I.S.) Fluorobenzene
I,2-Diclorobenzene	146	111,148	9.3	270	(I.S.) Fluorobenzene
I,2,4-Triclorobenzene	180	182, 145	10.69	190	(I.S.) Fluorobenzene
Esacloro-1,3-butadiene	225	223, 227	10.86	0.15	(I.S.) Fluorobenzene
I,2,4,5-Tetraclorobenzene***	216	214	11.94	1.8	(I.S.) Fluorobenzene

^{*} I valori delle concentrazioni soglia di contaminazione sono estratti dal D.Lgs. 152/06.

^{**} composti normati a una concentrazione soglia pari a | ppt.

^{***} composto presente nello standard e nel D.Lgs. 152/06 ma non nella tabella degli ioni suggeriti nel metodo 8260.

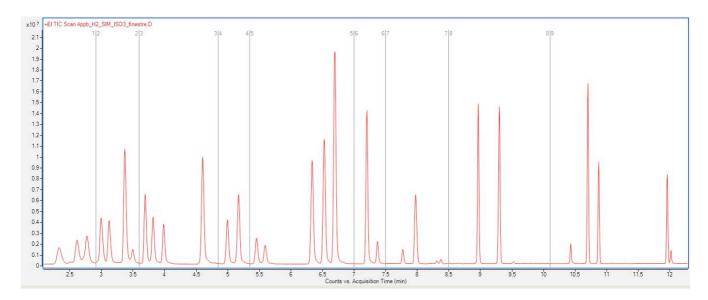
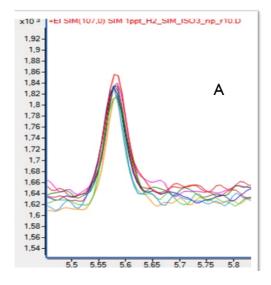


Figura I Cromatogramma di un campione a concentrazione pari a 4 ppb.

Ripetibilità

I test di ripetibilità sono stati condotti a due differenti livelli di concentrazione. Nello specifico, sono state effettuate 10 repliche analitiche alla concentrazione di I ppt. Di seguito, nelle Figure 2A e 2B sono riportati i cromatogrammi sovrapposti delle repliche analitiche a I ppt dei composti I,2-Dibromoetano (ione 107) e I,2,3-Tricloropropano (ione 75). Nelle Figure 3A e 3B sono presentati i valori di RSD% per gli stessi analiti, calcolati sulla concentrazione ottenuta tramite standard interno.

In aggiunta è stato calcolato il valore di BIAS applicando la formula:

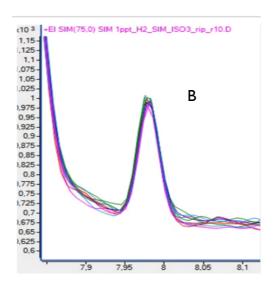

$$\frac{|\mu - C_A|}{C_A} \times 100$$

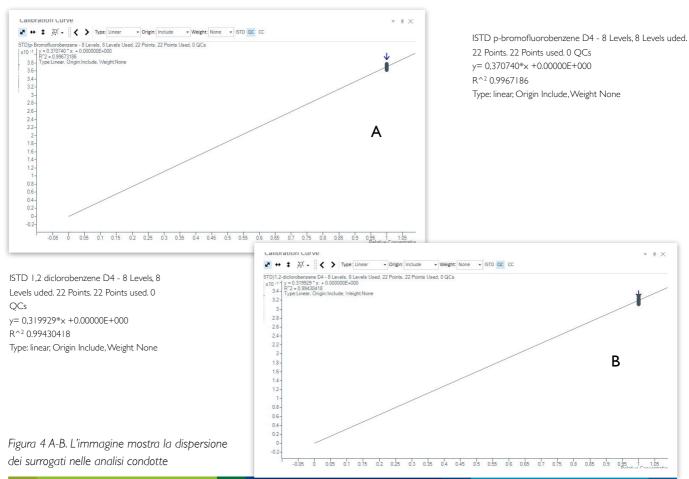
Dove: μ è la media aritmetica delle concentrazioni calcolate

C_A è la concentrazione attesa.

Di seguito, in Tabella 2, sono riportati i valori di bias calcolati per i due analiti normati a 1 ppt

	1,2,3-Tricloropropano	1,2-Dibromoetano
BIAS% I ppt	1.96	1.75




Figura 2: sovrapposizione della risposta di analisi di bianche (traccia nera) e le repliche a 1 ppt di concentrazione per gli ioni quantifier 107 (A) e 75 (B).

Α		Sample			1.2-Di	bromoet	ano
	Name	Data File	Acq. Date-Time	Sample , Group	RT	Resp.	Sample RSD
1ppt_H	I2_SIM_ISO3_rip_r1	1ppt_H2_SIM_ISO3_rip_r1.D	10/17/2023 6:09 PM	1	5.577	616	2.7
1ppt_H	12_SIM_ISO3_rip_r2	1ppt_H2_SIM_ISO3_rip_r2.D	10/17/2023 6:39 PM	1	5.606	581	2.7
1ppt_H	12_SIM_ISO3_rip_r3	1ppt_H2_SIM_ISO3_rip_r3.D	10/17/2023 7:08 PM	1	5.584	560	2.7
1ppt_H	12_SIM_ISO3_rip_r4	1ppt_H2_SIM_ISO3_rip_r4.D	10/17/2023 7:37 PM	1	5.577	580	2.7
1ppt_H	12_SIM_ISO3_rip_r5	1ppt_H2_SIM_ISO3_rip_r5.D	10/17/2023 8:07 PM	1	5.586	582	2.7
1ppt_H	12_SIM_ISO3_rip_r6	1ppt_H2_SIM_ISO3_rip_r6.D	10/17/2023 8:36 PM	1	5.579	595	2.7
1ppt_H	12_SIM_ISO3_rip_r7	1ppt_H2_SIM_ISO3_rip_r7.D	10/17/2023 9:05 PM	1	5.586	576	2.7
1ppt_H	12_SIM_ISO3_rip_r8	1ppt_H2_SIM_ISO3_rip_r8.D	10/17/2023 9:35 PM	1	5.585	559	2.7
1ppt_H	12_SIM_ISO3_rip_r9	1ppt_H2_SIM_ISO3_rip_r9.D	10/17/2023 10:04 PM	1	5.585	598	2.7
1ppt_H	12_SIM_ISO3_rip_r10	1ppt_H2_SIM_ISO3_rip_r10.D	10/17/2023 10:34 PM	1	5.579	583	2.7
		Sample			1.2.3-	Tricloro	propano
В	Name	Data File	Acq. Date-Time	Sample Group	RT	Resp.	Sample RSD
1ppt_H	2_SIM_ISO3_rip_r1	1ppt_H2_SIM_ISO3_rip_r1.D	10/17/2023 6:09 PM	1	7.982	588	4.3
1ppt_H	2_SIM_ISO3_rip_r2	1ppt_H2_SIM_ISO3_rip_r2.D	10/17/2023 6:39 PM	1	7.990	594	4.3
1ppt_H	2_SIM_ISO3_rip_r3	1ppt_H2_SIM_ISO3_rip_r3.D	10/17/2023 7:08 PM	1	7.982	608	4.3
1ppt_H	2_SIM_ISO3_rip_r4	1ppt_H2_SIM_ISO3_rip_r4.D	10/17/2023 7:37 PM	1	7.975	595	4.3
1ppt_H	2_SIM_ISO3_rip_r5	1ppt_H2_SIM_ISO3_rip_r5.D	10/17/2023 8:07 PM	1	7.984	568	4.3
1ppt_H	2_SIM_ISO3_rip_r6	1ppt_H2_SIM_ISO3_rip_r6.D	10/17/2023 8:36 PM	1	7.976	575	4.3
1ppt_H	2_SIM_ISO3_rip_r7	1ppt_H2_SIM_ISO3_rip_r7.D	10/17/2023 9:05 PM	1	7.977	574	4.3
1ppt_H	2_SIM_ISO3_rip_r8	1ppt_H2_SIM_ISO3_rip_r8.D	10/17/2023 9:35 PM	1	7.983	546	4.3
1ppt_H	2_SIM_ISO3_rip_r9	1ppt_H2_SIM_ISO3_rip_r9.D	10/17/2023 10:04 PM	1	7.983	568	4.3
1ppt H	2_SIM_ISO3_rip_r10	1ppt_H2_SIM_ISO3_rip_r10.D	10/17/2023 10:34 PM	1	7.978	574	4.3

Figura 3. Valori di RSD% per gli analiti 1,2-Dibromoetano (A) e 1,2,3-Tricloropropano (B) calcolati sulla concentrazione ottenuta tramite standard interno.

Surrogati

In Figura 4 A-B sono presentati i grafici dei composti p-Bromofluorobenzene e 1,2-Diclorobenzene-D4, rispettivamente, utilizzati come surrogati nelle analisi condotte.

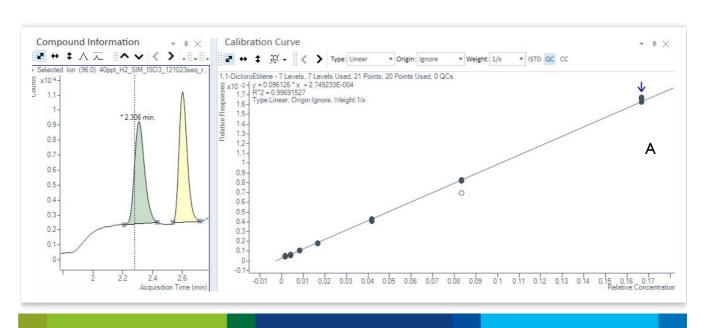
In Tabella 3 sono presentati i valori di accuratezza ai diversi livelli di calibrazione calcolati per i composti p-Bromofluorobenzene e 1,2-Diclorobenzene-D4 usati nelle analisi come surrogati.

ppt	p-Bromofluorobenzene	1,2-Diclorobenzene-D4
0.4	100.1	101.5
0.4	99.9	100.5
0.4	99.7	100.6
1	99.7	100.5
1	99.3	100.1
1	98.3	98.0
2	99.9	100.0
2	101.1	100.6
2	99.2	99.9
4	101.0	99.8
4	98.9	99.5
4	99.1	100.6
10	100.1	100.5
10	98.2	97.7
10	98.9	99.4
20	100.8	100.2
20	99.2	97.4
20	99.8	100.2
40	100.1	100.7
40	103.8	101.6
40	102.9	100.9
80	99.6	101.5
80	99.5	100
80	98.9	97.3
100	98.9	100.4
100	99.2	99.8
200	98.6	100.0
200	100.3	98.2
200	99.9	102.4
400	101.7	103.3
400	98.4	100.3
400	97.9	98.6
800	98.8	98.8
800	99.1	98.8
800	99.9	101.3
1000	101.9	103.4
1000	101.4	101.2
2000	101.0	99.3
2000	101.0	99.0
2000	100.3	98.8
4000	101.9	99.7
4000	100.1	98.6
4000	101.8	99.3

Tabella 3. Accuratezza sulla quantificazione dei surrogati per i vari livelli della curva di calibrazione.

Linearità

Per valutare la linearità, sono state condotte analisi a diversi livelli di concentrazione, includendo concentrazioni da 0.4 ppt a 4 ppb. Ogni livello della calibrazione è stato eseguito in triplicato. È stata scelta una curva lineare, utilizzando il metodo di curve fit (C.F.) weight, come elencato nella Tabella 4-5 insieme a ciascun analita.


Considerando il fatto che solo quattro molecole sono normate nel D.Lgs. I 52/06 a basse concentrazioni, ovvero 50 ppt per l'1,1-DicloroEtilene, I ppt per l'1,2-Dibromoetano, I ppt per l'1,2,3-Tricloropropano e 50 ppt per l'1,1,2,2-Tetracloroetano, si è deciso di suddividere in due range la curva di calibrazione. In particolare, la curva a più bassa concentrazione, utile per i quattro analiti sopra citati, è creata sui punti che vanno da 0.4 ppt a 40 ppt (Retta_B) mentre quella a più alta concentrazione, per tutti i restanti analiti, dai punti che vanno da 80 ppt a 4 ppb (Retta_A). Questa scelta è stata adottata per avere una più elevata accuratezza nella quantificazione agli estremi della curva. Nonostante ciò, le curve di calibrazione considerando tutto il range (Retta_{TOT}), ovvero da 0.4 ppt a 4 ppb, soddisfano il requisito di avere un coefficiente di correlazione (r²) maggiore di 0.995.

Nella Tabella 4, sono riportati i valori di r² delle rette di calibrazione degli analiti 1,1-DicloroEtilene, 1,2-Dibromoetano, 1,2,3-Tricloropropano e 1,1,2,2-Tetracloroetano. In particolare, nella prima colonna, sono elencati quelli riferiti alla RettaB considerando solo le concentrazioni 0.4 ppt, 1 ppt, 4 ppt, 10 ppt, 20 ppt e 40 ppt, mentre nella seconda colonna i valori riferiti alla Retta_{TOT}.

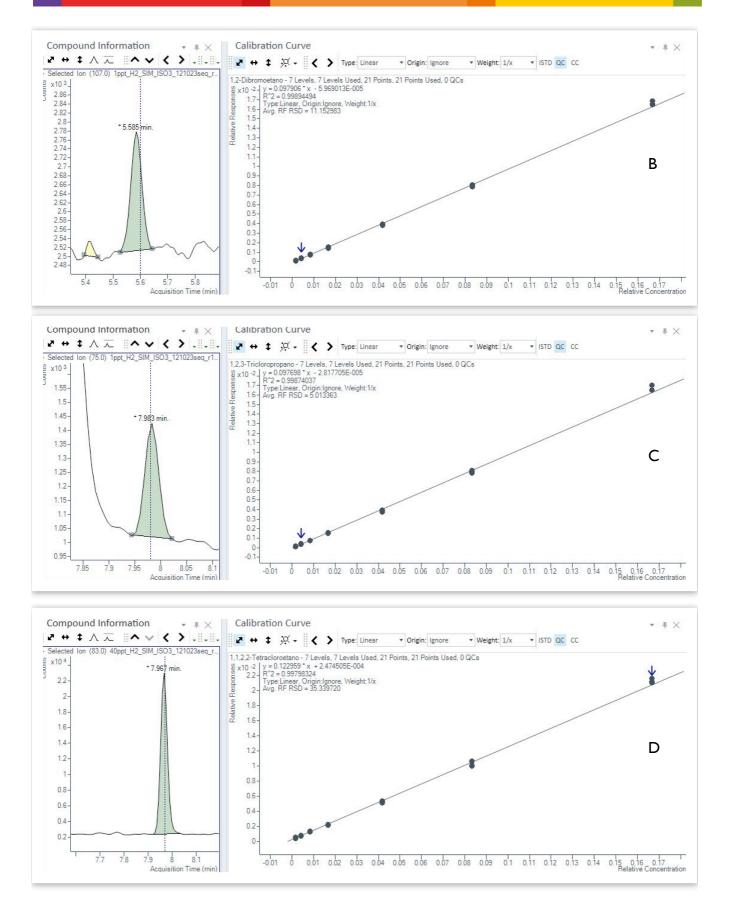
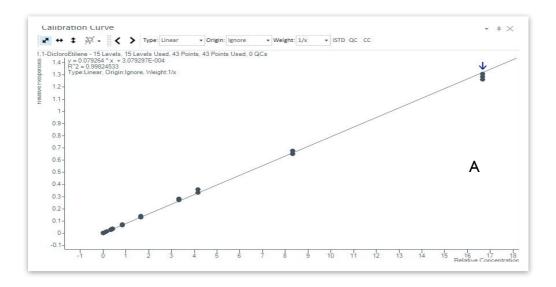
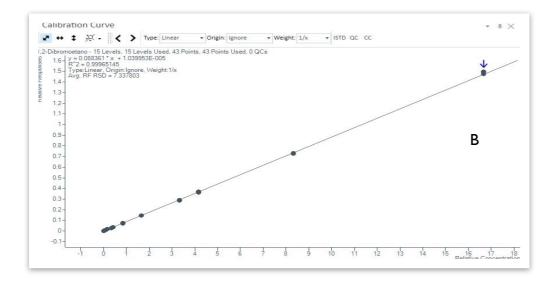
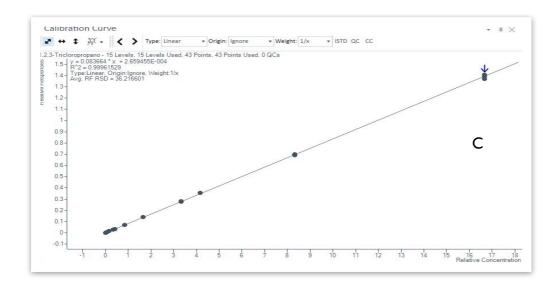
Analiti	Acquisizione	C.F weight	r² Retta _B *	r ² Retta _{TOT} **
1,1-DicloroEtilene	SIM	I/x	0.9969	0.9982
1,2-Dibromoetano	SIM	I/x	0.9989	0.9996
1,2,3-Tricloropropano	SIM	1/x	0.9987	0.9996
1,1,2,2-Tetracloroetilene	SIM	I/x	0.9979	0.9997

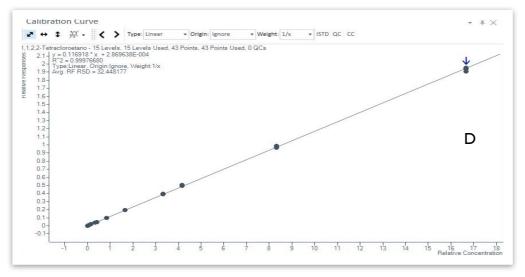
Tabella 4. Lista di analiti normati a basse concentrazioni con i rispettivi r^2 riferiti alle rette di calibrazione calcolate.

Di seguito i grafici delle rette dei composti con un i valori di concentrazione soglia più bassi ovvero 1,1-DicloroEtilene (50 ppt) (A), 1,2-Dibromoetano (1 ppt) (B), 1,2,3-Tricloropropano (1 ppt) (C)e 1,1,2,2-Tetracloroetano (50 ppt) (D).

^{*} Coefficiente di correlazione delle rette di calibrazione creato sui punti 0.4 ppt, 1 ppt, 4 ppt, 10 ppt, 20 ppt e 40 ppt.

^{**} Coefficiente di correlazione delle rette di calibrazione creato su tutto il range.

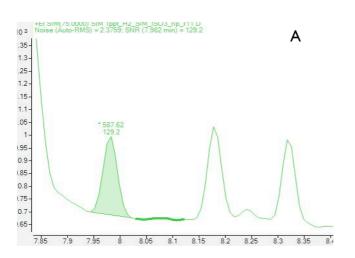

Figura 5. Retta di calibrazione degli analiti 1,1-Dicloroetilene (A), 1,2-Dibromoetano (B), 1,2,3-Tricloropropano (C), 1,1,2,2-Tetracloroetano (D) con range di concentrazioni 0.4ppt-40ppt.

Di seguito i grafici delle rette degli stessi composti ovvero 1,1-DicloroEtilene (A), 1,2-Dibromoetano (B), 1,2,3-Tricloropropano (C) e 1,1,2,2-Tetracloroetano (D) considerando, però, tutto il range di concentrazioni ovvero da 0.4 ppt a 4 ppb.

In Tabella 5 sono riportati i valori di r2 relativi ai restanti analiti, normati a più alte concentrazioni. Per molti di questi composti, gli ioni sono stati estratti dal tracciato in Scan, solo alcuni di questi sono stati acquisiti in SIM. Queste informazioni sono riportate nella seconda colonna in tabella.

Analiti	Acquisizione	C.F weight	r² Retta _A *
Vinil cloruro	SIM	1/x	0.993
Clorometano	SIM	1/x	0.998
trans-1,2-Dicloroetilene	Scan	1/x	0.997
I,I-Dicloroetano	Scan	1/x	0.998
cis-1,2-Dicloroetilene	Scan	1/x	0.998
cloroformio	SIM	I/x	0.999
Benzene	Scan	1/x	0.997
1,2-Dicloroetano	Scan	I/x	0.998
(I.S.) Fluorobenzene	Scan	I/x	-
Tricloroetilene	Scan	1/x	0.998
1,2-Dicloropropano	SIM	1/x	0.999
Bromodiclorometano	SIM	I/x	0.999
Toluene	Scan	1/x	0.997
1,1,2-Tricloroetano	SIM	I/x	1.000
Tetracloroetilene	Scan	1/x	0.998
Dibromoclorometano	SIM	1/x	0.993
Clorobenzene	Scan	I/x	0.999
Etilbenzene	Scan	I/x	0.994
(m+p) XILENI	Scan	I/x	0.996
Stirene	Scan	I/x	0.999
Bromoformio	SIM	none	0.995
(I.S.) p-Bromofluorobenzene	Scan	I/x	-
I,4-Diclorobenzene	SIM	1/x	0.996
(I.S.) 1,2-Diclorobenzene-D4	Scan	1/x	-
I,2-Diclorobenzene	Scan	1/x	0.998
I,2,4-Triclorobenzene	Scan	1/x	1.000
Esacloro-1,3-butadiene	SIM	1/x	0.999
I,2,4,5-tetraclorobenzene	Scan	I/x	0.997

Tabella 5. Lista di analiti normati ad alte concentrazioni con i rispettivi r2 riferiti alle rette di calibrazione calcolate.


Rapporto segnale rumore

Sono stati valutati i rapporti segnale/rumore mediante l'utilizzo del software Qualitative Analysis di Masshunter, utilizzando i seguenti parametri

Qualitative Analysis di Masshunter con i seguenti parametri:

- Signal definition: Height
- Noise definition: AutoRMS

Nella Figure 7 sono mostrati i cromatogrammi degli analiti 1,2,3-Tricloropropano (A) e 1,2-Dibromoetano (B) alla concentrazione di 1 ppt con i relativi rapporti segnale/rumore calcolati come prima descritto.

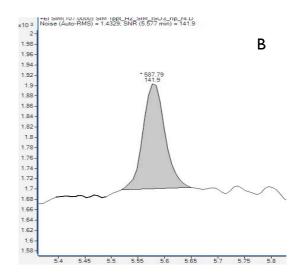


Figura 7 Rapporto segnale rumore dell'1,2,3-Tricloropropano (A) e dell'1,2-Dibromoetano più alto (B)

Inoltre, di seguito, sono presentati alcuni cromatogrammi: nella prima immagine (Figura 8A) sono riportate rispettivamente un'analisi a concentrazione 0.4 ppt (traccia verde), una a concentrazione I ppt (traccia rossa), e un bianco (traccia nera) estraendo solo lo ione 75, ione quantifier del composto I,2,3-Tricloropropano. Nella seconda immagine (Figura 8B) sono riportati rispettivamente un'analisi a concentrazione 0.4 ppt (traccia verde), a concentrazione I ppt (traccia rossa) e un bianco (traccia nera) estraendo solo lo ione 107, ione quantifier del composto I,2-Dibromoetano.

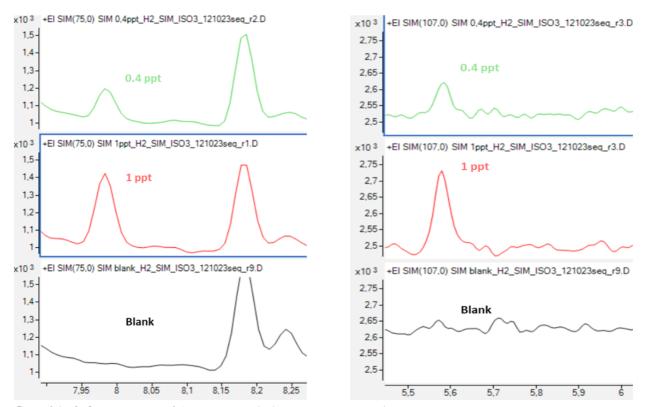


Figura 8 A - B Cromatogrammia 0.4ppt traccia verde, l'ppt traccia rossa e un bianco traccia nera rispettivamente per 1,2,3-Tricloropropano (A) e 1,2-Dibromoetano più alto (B)

Conclusioni

La continua evoluzione dei materiali impiegati nella strumentazione analitica ha consentito di raggiungere livelli di inerzia chimica e sensibilità senza precedenti, consentendo l'ottenimento di risultati affidabili e precisi anche con l'utilizzo di carrier alternativi. Tra questi, l'impiego dell'idrogeno come gas di carrier si è dimostrato particolarmente vantaggioso in termini di sicurezza e prestazioni, soprattutto grazie all'avvento dei generatori di ultima generazione.

Sfruttando la tecnologia Hydroinert di Agilent Technologies in combinazione con il nuovo EV2 dotato di autocampionatore Centurion di EST Analytical, siamo in grado di garantire il rispetto rigoroso dei limiti stabiliti dal D.Lgs 152/06. Questa configurazione avanzata ci consente di ottenere un limite di rilevamento (LOD) inferiore a 0,35 ppt per gli analiti di interesse, confermando una sensibilità eccezionale e una precisione affidabile nelle nostre analisi ambientali.

