

Micro-Chamber/Thermal Extractor

Fast and flexible sampling of chemicals and odours released from materials and foods

Micro-Chamber/Thermal Extractor

The Micro-Chamber/Thermal Extractor (µ-CTE[™]) is a compact, stand-alone unit for the rapid, method-compliant sampling of chemical vapours released from a wide variety of products, foods and materials.

With its simple operation and ability to simultaneously collect volatile and semi-volatile organic compounds (VOCs and SVOCs) from up to four samples, the μ -CTE is a powerful tool for increasing laboratory productivity.

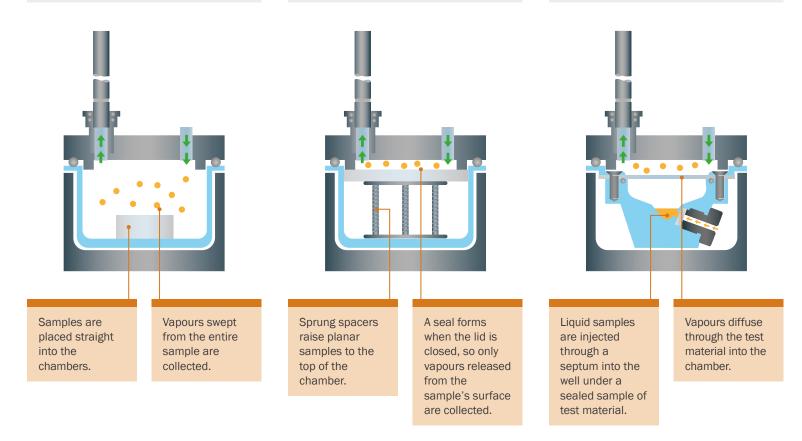
It is also versatile – accommodating many types of solid and liquid sample, and allowing vapour collection using sorbent tubes, DNPH cartridges and on-line systems.

The μ -CTE is widely used by industry and test laboratories for determining representative emission or odour profiles, identifying emission sources, and simulating ageing or formulation processes.

Murielle Etienne Bostik, France

Convenient sampling of chemical vapours

The µ-CTE streamlines the whole process of sampling organic vapours from everyday materials, thanks to the minimised need for sample preparation and simple operation.


- Screening of products before long-term certification tests.
- Comparing products to those of competitors.
- profiles.
- Product troubleshooting and R&D.
- tests, or monitoring fragrance profiles as they change over time.
- Permeation tests.

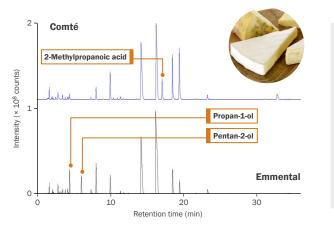
Perfect for a range of sample types

With three modes of operation, the μ -CTE can be used for a variety of investigations.

Bulk emissions testing is valuable for profiling odours and emissions, and for testing of raw materials and foods. **Surface emissions testing:** This approach is suitable for determining area-specific emission rates from flat samples.

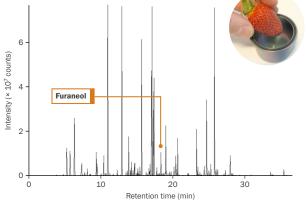
Permeation testing: A permeation accessory allows measurement of volatiles permeating through a thin layer of material.

Other options include:

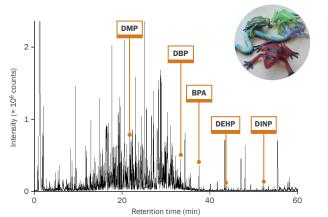

- A Humidifier Accessory supplies the µ-CTE with 50% humidified air. This allows closer simulation of conditions used in reference emission tests, and can enhance the recovery of some less-volatile polar compounds.
- Toggle valves allow the gas flow to unused chambers to be turned off, reducing gas consumption.
- A Chamber Calibration Tool enables the performance and reproducibility of the individual sampling chambers to be compared, both on one system and between systems.
- An SPF Sample Cutter makes it easy to cut out cylindrical samples of spray polyurethane foam or other soft materials.

Comprehensive odour profiling...

... of foods and consumer products

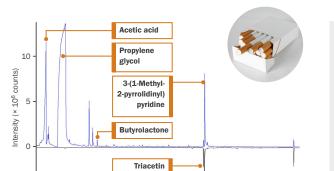

Sampling of headspace volatiles is well-established in the food and fragrance industries, and the $\mu\text{-}CTE$ uses this principle to odour-profile a wide range of sample types.

Aroma-profiling cheese



Key differences between the aroma profiles of food products are rapidly identified using the µ-CTE, as illustrated here by this comparison of vapours released from different **cheeses.**

Identifying key aroma compounds



The µ-CTE is perfect for identifying target species in complex aroma profiles such as **strawberry** headspace. Furaneol was of interest in this case, with its desirable 'burnt sugar' aroma and sub-ppb odour threshold.

Assessing VOCs from consumer products

The µ-CTE is ideal for quickly assessing emission profiles from products – such as the **plastic toy** examined here. Chemicals identified included endocrine disruptors such as phthalates and bisphenol A.

10

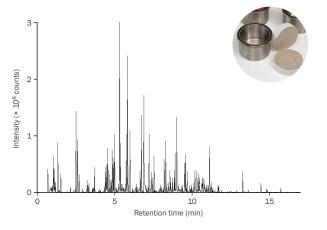
Retention time (min)

5

. 15 Key differences between 'rolling' **tobacco** (top) and manufactured cigarette tobacco (bottom) are easily seen in this side-by-side comparison carried out using the µ-CTE.

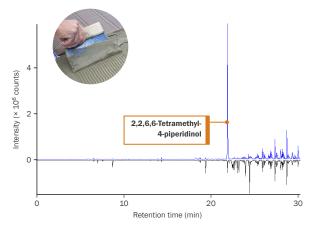
Comparing the odour profiles of related products

Rapid emissions screening...

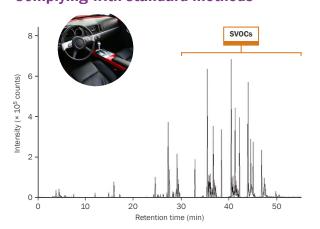

... of materials that affect indoor and in-vehicle air quality

The μ -CTE is ideally suited to the quick screening of emissions from materials used indoors or in vehicles – aiding compliance with regulatory requirements and facilitating product development.

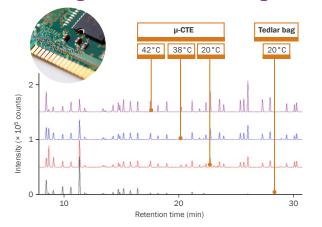
Predict results of reference tests


Results from the µ-CTE can be correlated with long-term (e.g. 28-day) reference tests – allowing you to predict whether your product will pass or fail.

Screening construction materials


The µ-CTE is ideal for screening emissions from products such as flooring and **plasterboard**, for routine factory production control under the Construction Products Regulation (see prEN 16516).

Comparing products across a range


Emission profiles of similar products like these two brands of **grab-adhesive** are readily compared using the μ -CTE – aiding product development and compliance with standard methodology such as ASTM D7706-11.

Complying with standard methods

New regulations and voluntary controls limit the chemicals released from **car trim**, and the μ -CTE is an ideal tool for assessing vapour profiles from these materials – see ISO 12219-3.

Assessing different test methodologies

Quick investigations of how emission profiles vary under different conditions are easily conducted using the µ-CTE. This example shows the detection of residual solvents in **printed circuit boards**.

Compliant with key standard methods

Due to its outstanding productivity and exceptional repeatability and reproducibility, use of the μ -CTE is now described in a number of key international standard methods.

It is required for compliance with:

- ISO 12219-3: Interior air of road vehicles Part 3: Screening method for the determination of the emissions of volatile organic compounds from vehicle interior parts and materials – Micro-scale chamber method.
- ASTM D7706-11: Standard practice for rapid screening of VOC emissions from products using micro-scale chambers.
- VDI 2083-17: Reinraumtechnik Reinraum- und reinheitstauglichkeit von werkstoffen [Cleanrooms – Cleanroom cleanliness and suitability of materials].
- GUT Test: Test system for VOC emissions from carpets (Gemeinschaft umweltfreundlicher Teppichboden).
- ASTM D7859: Standard practice for spraying, sampling, packaging, and test specimen preparation of spray polyurethane foam (SPF) insulation for testing of emissions using environmental chambers.
- ASTM D8142: Standard test method for determining chemical emissions from spray polyurethane foam (SPF) insulation using micro-scale environmental test chambers.
- General Motors GMW17082: Determination of volatile and semi-volatile organic compounds from vehicle automotive materials using a microscale chamber.
- IKEA Test Instruction IOS-TI-0219: Micro chamber sampling for screening of volatile organic compounds emitted from materials and products.
- ISO 16000-25: Determination of the emission of semi-volatile organic compounds by building products – Microchamber method. (Models M-CTE250, M-CTE250I and M-CTE250TI only).

It is also cited as a secondary screening method in:

- prEN 16402: Paint and varnishes Assessment of emissions of substances from coatings into indoor air – Sampling, conditioning and testing.
- prEN 16516: Construction products Assessment of release of dangerous substances.

Specifications

µ-CTE-250

Maximum temperature: Number of chambers: Volume of each chamber: Flow ranges (air or gas):

From ambient to 250°C 4 114 mL 50–500 mL/min (high) 10–70 mL/min (low)

Markes International

UK:	1000B Central Park, Western Avenue, Bridgend, CF31 3RT	T: +44 (0)1443 230935
USA:	2355 Gold Meadow Way, Gold River, Sacramento, California 95670	T: +1 866-483-5684 (toll-free)
Germany:	Bieberer Straße 1–7, 63065 Offenbach am Main	T: +49 (0)69 6681089-10
P.R. China:	Unit 1002, Building 1, No.418, Guilin Road, Shanghai 200233	T: +86 21 5465 1216
E: enquiries@markes.com W: www.markes.com		