

Analisi del tetraidrotiofene (THT) nel gas naturale con il Micro GC Agilent 990

Autore

Jie Zhang Agilent Technologies, Inc.

Introduzione

Il gas naturale, inteso come fonte di energia, viene impiegato maggiormente per il riscaldamento, la cottura dei cibi e la generazione di elettricità. Quando registra delle perdite e la concentrazione nell'aria raggiunge il limite di esplosività, può infiammarsi facilmente. Il gas naturale è inodore, quindi per rilevare una perdita nello stadio iniziale, viene aggiunta una sostanza odorizzante che funge da indicatore di perdite e agente di avvertimento.

Il tetraidrotiofene (THT) è un odorizzante ampiamente utilizzato in Europa e Cina. Il THT è stabile, non corrode il gasdotto ed è facilmente percepibile da qualsiasi persona con un senso dell'olfatto normale. Tuttavia vi sono dei fattori che alterano l'odore incidendo nel tempo sulla reale concentrazione o intensità degli odoranti, come ad esempio, l'adsorbimento o l'assorbimento di gasdotti e contaminanti del gas naturale che mascherano l'odorizzante. Il costante e frequente monitoraggio degli odorizzanti è essenziale al fine di mantenerne l'efficacia.

Controllare la concentrazione di THT al livello più basso garantendone al contempo la stessa efficacia è importante in termini di risparmio dei costi. In Cina il limite di THT è di 20 mg/m³ (ca. 5,6 ppm) per il CJJ/T 148-2010. In Europa, l'intervallo varia da 10 a 40 mg/m³.

Uno studio precedente ha dimostrato che è possibile analizzare il THT nel gas naturale grazie al sistema Micro GC Agilent 490.¹ Lo stesso vale per Micro GC Agilent 990. Il presente lavoro ha comprovato che il sistema Micro GC Agilent 990, dotato di canale CP-Sil 19CB, può monitorare efficacemente il livello di tracce di THT nel gas naturale simulato con un buon rapporto segnale-rumore (S/N).

Condizioni sperimentali

Il sistema Micro GC Agilent 990 è dotato di un canale diretto CP-Sil 19 CB, lungo 6 m, per analisi di THT.

Tabella 1. Condizioni del test per THT su un canale CP-Sil 19CB Agilent.

Condizioni analitiche del canale	Impostazioni
Pressione in colonna	200 kPa
Temperatura della colonna	90 °C
Gas carrier	Elio
Tempo di iniezione	255 ms

Tabella 2. Campione standard di THT.

Composto	Concentrazione (ppm)
n-C ₆	4,95
Tert-butil mercaptano	5,17
THT	4,01
n-C ₉	3,94

Risultati e discussione

La Figura 1 mostra il cromatogramma di 4 ppm di THT sul canale CP-Sil 19CB. Il THT eluisce a 49,6 secondi, l'ottano a 31,3 secondi e il nonano a 52,7 secondi. La risoluzione tra il THT e il n- c_9 è di 2,1. Il rapporto segnale-rumore per il picco di THT pari a 4 ppm è superiore a 20 nelle condizioni del test applicate, misura accettabile per analisi a livello di traccia di THT nel gas naturale. La valutazione della ripetibilità si basava su 10 iniezioni di 4 ppm di THT. La ripetibilità dell'area corrisponde al 2,5% mentre la ripetibilità relativa al tempo di ritenzione (RT) è dello 0,019%.

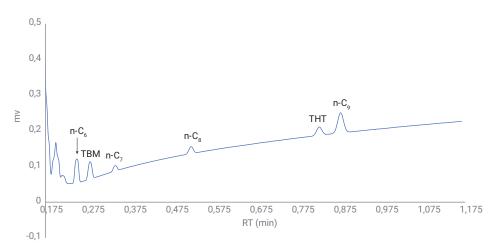


Figura 1. Misura di 4 ppm di THT su una colonna Agilent CP-Sil 19CB.

Tabella 3. RT e ripetibilità dell'area di 4 ppm di THT analizzate dal sistema Micro GC Agilent 990.

Iniezione n°10	RT (min)	Area (mv × s)
1	0,827	0,022
2	0,827	0,022
3	0,827	0,021
4	0,827	0,022
5	0,827	0,023
6	0,827	0,022
7	0,827	0,022
8	0,827	0,023
9	0,827	0,022
10	0,827	0,022
Media	0,827	0,022
RSD%	0,019	2,5

Conclusione

Un canale diretto CP-Sil 19CB Agilent può separare il THT dagli altri idrocarburi del gas naturale. Questa colonna a polarità intermedia ha una capacità di ritenzione inferiore sugli idrocarburi più pesanti come il nonano, che migliora in modo efficace la velocità di analisi portandola a circa un minuto. Il valore di RSD% del RT (<0,02%) e il valore RSD% (<3%) dell'area dimostrano l'eccellente ripetibilità dell'analisi di THT, comprovando in tal modo che il sistema Micro GC Agilent 990 rappresenta la piattaforma ideale per effettuare analisi di THT nel gas naturale.

Bibliografia

 Van Loon, R. Analysis of Tetrahydrothiophene (THT) in Natural Gas Using Agilent 490 Micro GC, Agilent Technologies Application Note, publication number 5990-8528EN, 2011.

www.agilent.com/chem

Le informazioni fornite possono variare senza preavviso.

